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A theoretical framework is developed for moment neuronal networks (MNNs). Within this framework, the
behavior of the system of spiking neurons is specified in terms of the first- and second-order statistics of their
interspike intervals, i.e., the mean, the variance, and the cross correlations of spike activity. Since neurons emit
and receive spike trains which can be described by renewal—but generally non-Poisson—processes, we first
derive a suitable diffusion-type approximation of such processes. Two approximation schemes are introduced:
the usual approximation scheme (UAS) and the Ornstein-Uhlenbeck scheme. It is found that both schemes
approximate well the input-output characteristics of spiking models such as the IF and the Hodgkin-Huxley
models. The MNN framework is then developed according to the UAS scheme, and its predictions are tested

on a few examples.
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I. INTRODUCTION

During the past 20 years we have witnessed the develop-
ment of the artificial neural network (ANN) theory and its
impact on neuroscience and engineering applications. While
early approaches would simply represent neurons as binary
devices, most recent developments of the ANN theory have
used heuristic sigmoidal-shaped input-output functions to de-
scribe the relationship between the activity of a neuron, rep-
resented by its mean firing rate, and the intensity of the syn-
aptic input.

This picture, however, has turned out to be largely over-
simplified. Indeed, it has emerged that the spike activity of a
neuron is decided not only by the mean rate, but also by
higher order statistics of its input [1-10]. Consider, for
instance, a neuron which receives inhibitory and excitatory
stochastic inputs of equal rate. Due to the fluctuations of
the input, the membrane potential may occasionally cross
the threshold for spiking; therefore the output firing rate
will in general be positive even if the mean input is zero,
thereby contradicting the basic assumptions of ANN. This
simple example illustrates that the ANN theory is not much
use in understanding the behavior of real nervous systems,
in that it completely discards the “noisy” nature of the neural
code.

The question then arises of whether it is possible to de-
velop a framework of neural computation which includes not
only the first- (mean input rate) but also the second- (fluc-
tuations, correlations) and possibly higher-order statistics of
firing. In this paper we will demonstrate that this is indeed
possible, and we will lay the foundations of such a frame-
work, which we call the moment neuronal network (MNN)
framework.

The advantage over the ANN theory is evident. Synchro-
nization of spiking activity, for instance, is known to play an
important role for information processing in nervous Sys-
tems, but it is clearly out of the scope of ANNs. For a MNN,
instead, synchronized firing corresponds to the case of fully
correlated activity, i.e., a correlation coefficient equal to 1.
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Additionally, since the MNN theory is based upon spiking
neurons, all its parameters can be related to physiological
observables, and its predictions can be tested directly in ex-
periments (see next sections).

We start by investigating the activity of a single neuron.
Although single-neuron models with random inputs have
been widely studied in theory and numerically, most such
studies are done under the assumption that the inputs are
Poisson processes [11-27], which is a very rough approxi-
mation of physiological data. We will consider instead the
case of renewal process inputs, which represent a more ac-
curate approximation of synaptic inputs occurring in vivo,
and becomes exact in the case of the integrate-and-fire (IF)
model. The salient feature of a renewal process is that the
successive occurring times of spikes are mutually indepen-
dent random variables with a common distribution.

However, given the difficulties in dealing analytically
with a system whose inputs are of renewal form (even in the
simple Poisson case), suitable continuous approximations are
required. In the literature, the so-called usual approximation
scheme (UAS) was proposed earlier to approximate Poisson
process inputs [17]. Also, the use of the Ornstein-Uhlenbeck
(OU) process to approximate neuronal models with Poisso-
nian inputs has been investigated for decades and most, if not
all, theoretical results have been obtained for the OU ap-
proximation [28-31].

In both cases the idea is to find a diffusion process
which shares the same mean and variance as the Poisson
process. In Sec. I A we will extend this approach to the
case of renewal process inputs and derive the corresponding
UAS and OU approximating schemes. Then, in Sec. II C
we will show that the first- and second-order statistics of
the output spike trains generated by the IF model are not
affected when the original renewal input is replaced by the
continuous approximations. This result lies at the foundation
of our MNN framework. Indeed, since the output spike trains
of an IF neuron are again renewal processes, our approxima-
tions can be used to describe the behavior of IF neurons in a
network.
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In Sec. III we will develop the MNN framework and
define the mapping between the moments of the input
and the output. Similar ideas to investigate the input-output
relationship of spiking neuronal networks have been investi-
gated in the literature; see, e.g., [32]. However, as pointed
out in [15] (p. 435, final paragraph), all earlier approaches
were based on two key assumptions: (1) that the output of
the integrate-and-fire model is again a Poisson process; (2)
that the inputs are independent. The framework presented
here, instead, requires neither of the assumptions. Finally, in
Sec. IV we will apply the MNN framework to show how
spontaneous activity can be maintained in a feedforward net-
work, and highlight the key role played by inhibition in that
context.

The MNN framework presented here can be considered as
an attempt toward a general framework of computation with
stochastic systems. In this respect, it would play the role of
the central limit theorem in the probability theory, whereas
earlier approaches based exclusively upon the mean could be
likened to the law of large numbers. Besides, although the
MNN theory is developed in terms of spiking neuronal net-
works, the learning theory developed for ANNs will be im-
mediately applicable here. This will hopefully shed more
lights on how to fill the gap between the mathematical theory
of neuronal systems and neurobiology.

II. APPROXIMATIONS
A. General results

For the simplicity of notation, we first consider the case
of a single renewal process. Let 7|,7,,... be a series
of independent and identically distributed random variables
that represent the time intervals between events (spikes), and
use T to denote them. Let f(¢) be the probability density
function of 7. We assume that the mean, variance, and third
central moment of 7T exist and denote them by A\, a2, and A3,
respectively.

Let {N,:1=0} be the corresponding renewal process. The
expected number and variance of events in (0,¢] are [see Ref.
[30], Eq. (4.4), Ref. [33], Eq. (1)]

2 y2
t a =N\

H)=(N,)=—+

ul) =Ny =+ =3

+o(1) (1)

and
(1) = (N)) = (N,

When N, is a Poisson process, we have a’*=\?%, 0(1)=0, and
u(t)=(N,))=t/\. In general Eq. (1) holds true when ¢ is large
enough (see following numerical results).

A useful general result for renewal processes is that (see
Ref. [33], p. 81)

2 1 o A
olzzﬁt+(—+———3 +o(1
0=+ g o ) Hol)
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=F t+ @-Fﬁ_ﬁ +o(1). (2)

From Egs. (1) and (2), we get the following theorem.
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Theorem 1. The usual approximation takes the following
form:
@

dt
dN,~ —+

A )\3/2dBl’

a? —\2
Bo=—"2

3)

where B, is the standard Brownian motion.

Note that in general B, # 0 due to the constant in Eq. (1).
We call the approximation in Theorem 1 the usual approxi-
mation scheme.

Looking at the expression of the variance o2(t) given
by Eq. (2), we see that the leading term we omit in the UAS
is 1/6+a*/2\*=\;/3\3. Since in the UAS only the deriva-
tive of ¢2(¢) is used, the constant term disappears (see Ref.
[16]). We therefore want to find a process 7®N(¢) satisfying
the property such that both its first- and second-order mo-
ments are in agreement with the first- and second-order mo-
ments of the renewal process. In other words, we want to
find a process 7** with

3 2
I

(B~ n*0P) =1+ (@ *ox T 3

then we can approximate the renewal process N(z) with the
process

~ 1 o
dN(t) = th+ Wd[Bt— 7M.

We choose an Ornstein-Uhlenbeck process given by

dé(t) = - &ndt + dB,,

&0)=0. (5)

It is easy to show that &(f)= [} exp[—(t—s)]dB,. Let 7*)
=c&(r), where ¢ is a constant (depending on «, \, and \3)
satisfying

t

(B~ 0P) =1+ f exp[—2(r—s)]ds
0

- 2cfl exp[— (t—s)]ds

0

2
=t+ %[1 —exp(=21)] —2c[1 —exp(-1)]

2
=t+3_2c+0(1)' (6)

Thus, by Egs. (4) and (6), we have

Since o?()=0, letting t—0 in Eq. (2) we have \/6a?
+a?/2N=\;/3a*>=0. Therefore
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N2 2,
A=4+—S+—--—5=4>0,
3 N 3a
i.e., ¢, is a real and non-negative number in Eq. (7).
Hence we find an approximating scheme for N(¢) in terms

of the OU process N(7) defined by
~ 1 a
dN(1) = th + W[dB’_ c,dé1)], (8)

where c, is defined by Eq. (7) and &(r) by Eq. (5).

We summarize the results above.

Theorem 2. A renewal process with the first three
order statistics )\,az,)\3 of the times between spikes and
the process defined by Egs. (5), (7), and (8) share identical
first- and second-order statistics, after omitting higher-order
terms.

The approximation scheme defined in Theorem 2 is
termed the OU scheme (OUS).

We have not seen in the literature the results of the ap-
proximation schemes presented here. One of the reasons is
that the UAS is a Markov process while the original renewal
process N(r) usually is not a Markov process. This might be
the reason that there is not a publication in the literature to
explore the approximation schemes we proposed here. Of
course, the OUS is not a Markov process.

B. Synaptic inputs

We consider the integrate-and-fire model with synaptic
inputs. For two given quantities V,;, (threshold) >V, (rest-
ing potential), and when V,<V,,, the membrane potential V,
satisfies the following dynamics:

dvz == L(Vz - Vrest)dt + dlsyn(t) ’

VO = Vrest = BO’ (9)

where L>0 is the decay rate, I,,(t) is the synaptic input
given by

P q
dl,,, (1) = a2, dNE(1) - b2 dN'(1) (10)

i=1 j=1

where a is the magnitude of excitatory postsynaptic poten-
tials (EPSPs), b is the magnitude of inhibitory postsynaptic
potentials (IPSPs), NZE and N; are renewal processes (EPSPs
and IPSPs) generated from the ith and jth neurons, and p and
q are the total number of active excitatory and inhibitory

synapses. Let T%, ; (T}, ;) be the time between events in the

renewal process NiE (N]’-), respectively. Once V, is greater than
Vi, it is reset to V,,,=B,. We define

T= il’lf{t > O:V[ = Vth} (1 1)

as the firing time (interspike intervals).

Since the synaptic input /,,,(r) is modeled as a sum of
renewal processes, we can apply here the results derived in
the previous section. For the simplicity of notation, we as-
sume that for i=1,2,...,p, j=1,2,...,q
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Tin,i = Tin,j =T
where the mean, variance, and third central moment of 7 are

given by \, o?, and \;, respectively. Let us further suppose
that

pP=q,

b=ar, r=0. (12)

Here r is the ratio between inhibitory and excitatory inputs.
When r=0, all inputs are excitatory; when r=1, inhibitory
inputs equal excitatory inputs.

Therefore, according to Eq. (8), we have

aNF(@) ~ ~dr+ SSABEG) - c 0], (1)

where &(7)= [1 exp[—(—s)]dBE(s) and BE(z) is the standard
Brownian motion.

Now we let dé67(1) =37 d& (1); then by Eq. (5), £°7()
satisfies

dE=P(1) = = €97 (1)di + \pdBE(1),
&(0)=0.
Hence, by Eq. (13) and the equation above

ac,
)\3/2

P
a
> aNE(r) ~ Dar + vgmdBE(t) — —5d&P (1),

i=1 A
where &2(1)=\p/ o exp[—(r—s)]dBE(s), and BE(7) is again
the standard Brownian motion.

A similar result holds for E?zlde(t). Hence, by Egs. (10)
and (12), we have

(I-7)

Ly (1) = P4 S 0p(T+ P)dB = e, dg (1)

(14)
and
1 -
th == L(Vt - Vrexz)dt + %dl
aa - o
+W[w(1 +r)dB, - c,dEP(1)] (15)

where B, is the standard Brownian motion and &7 is the OU
process satisfying

dEP! (1) == EP(n)dt + \Np(1 + r*)dB,

§r1(0)=0,
ie., EP7(t)=\p(1+r%) [} exp[—(t—s)]dB,.

In summary, we have proposed two approximation
schemes: (1) the UAS (by Theorem 1)

(1-7)

a
dv, =~ L(U, = Vies)dt + P N p(1+ rz)de’

aa
dt + —)\3/2 \

041906-3



FENG, DENG, AND ROSSONI

Vo= Vrest:BO’ (16)
and (2) the OUS (by Theorem 2)

1 -
WV, =LV~ v ydr+ LI g,

ao 5"
+ W[\*’p(l +r°)dB,— c,dEP"(1)],
dér(t) = — EP7(1)dt + \p(1 + r))dB,,

VO = Vrest= BO’

£7(0)=0, (17)

where

Nooar 2N
=2—\[4+ 5+ —— 5.
3a N 3a

As we mentioned before, the interest of the UAS lies
in the fact that all similar results in the literature are
exclusively developed for Poisson processes. In the next
section we will carry out a detailed numerical comparison
between the statistics of the output spike trains obtained
with the two schemes above and with the original renewal
process.

C. Neuronal model with Gamma-distributed inputs: IF model
1. Theoretical results

In order to carry out numerical simulations, we further
assume that 7 is distributed according to a Gamma
distribution' with positive parameters «,u, i.e., the corre-
sponding density function is

1 KtK—le—f/,bL
f(t)=<;) o (18)

Therefore we have (T)=xu, var(T)=ku?, and the third cen-
tral moment

(T = k) =(T%) = 3kp(T?) + 36 puX(T) = i

3
wl'(k+3)
= W =3k + Kp) kp+ 2631
= (k+2)(k+ Dk =3°u> — K’
=2ku’,
that is,
\=Kpu,
o? = ku?,
Ny =2ku’.

Therefore, in the UAS, Eq. (9) becomes

10f course, it is easy to generalize the following results to other
distributions, e.g., the inverse Gaussian distribution [16].
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ap(l-r a —>°
dv,==L(v, = V,.)dt + al )dt +==\p(l+ r?)dB,,
K VK™
Vo= VrestzB()’ (19)
while, in the OU approximation, we get the system
ap(1-r
th == L(Vt - Vrest)dt + Mdt
KM
a _——<
+ ——=[\p(1 + r*)dB, - c d&""(1)],
VIS

dgP(t) == EP"(1)dt +\p(1 + r*)dB,,
VO = Vrext = BO»

£77(0)=0, (20)
where ¢,=2—\4+Kk*u/3—pu/3, and k>max{0,1-12/u}.

2. Numerical results 1

For our numerical simulations we used the parameters:
a=0.5mV, b=ar, V,,=By, V;=20mV, p=¢g=100,
y=20 ms. The same parameters have been employed else-
where [16], and are thought to be in the physiological range
for visual cortex cells. The membrane equations Egs. (9),
(19), and (20) were solved numerically using a step size of
0.01 ms, with I;,,(0)=0. After each spike, V, was reset to
V,ese=Bo, while I, (1) was left unchanged.

We considered different values of the parameters « and u
for the Gamma distribution of the time 7 between synaptic
inputs. Also, we vary the ratio r between inhibitory and ex-
citatory inputs in the range where the model displayed spik-
ing activity. For each choice of «, u, and r, we generated
1000 spikes, then calculated the mean output firing rate (7)~!
[see Eq. (11)] and the coefficient of variation (CV) of the
interspike intervals, C,,,=+/var(7)/(7)% In the following we
will refer to the latter as the “output CV.”

Figure 1 (top) shows the results obtained with «=0.5,
u=10 (i.e., (T)=5 ms). In this case, the output CV obtained
with renewal process inputs is smaller than in the UAS
and the OUS approximations. Figure 1 (middle) corresponds
to k=1, u=10 ((T)=10 ms), i.e., a Poissonian input. In
this case, the UAS and OUS approximations gave identical
results. Figure 1 (bottom) shows the results obtained with
k=5, u=2 ((T)=10 ms).

3. Numerical results 11

Here we consider the IF model with spike trains generated
by an IF model as inputs to a further IF model.

First, we simulated an IF model with Poisson inputs of
intensity A=0.2,0.1 (i.e., 100 and 200 Hz) and r=0.6, and
generated 200 spike trains with interspike intervals Ti,i’ Tfn’ j,
i=1,2,...,p, j=1,2,...,q. These were sent as inputs to an-
other IF model. To carry out a comparison of various models,
we used 5000 spikes to calculate the mean and variance in
the following equations:
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FIG. 1. (Color online) The coefficient of variation (CV) of the output interspike intervals plotted vs the output firing rate for an IF model
with renewal process inputs [(red) empty circles, parameters of the Gamma distribution as indicated], and corresponding UAS [(black)
diamonds] and OUS [(blue) circles] continuous approximations. Different data points correspond to varying the inhibitory-excitatory ratio.

KK = < mz>

2_
wkp? = var(Ts, ).

By solving them we obtain «=10.7509, w=0.5425 for
A=0.2, and k=8.3642, u=1.6301 for A=0.1.

Using these parameters, we approximated the input as de-
scribed in the previous subsection. Finally, 500 output spikes
were generated with »=0,0.05,...,0.8 and the correspond-
ing output mean firing rate and CV were calculated, as
shown in Fig. 2.

In Fig. 2 (top) we plotted the interspike interval distribu-
tions of the natural inputs obtained for A=0.2 (left) and 0.1
(right). It is clearly seen that such distributions cannot be
fitted by exponentials, that is natural inputs cannot be simply
approximated by Poisson process. Figure 2 (bottom) shows
the output firing rate and CV obtained in response to natural

inputs and their UAS and OUS approximations. We conclude
that both schemes work reasonably well, with the OUS out-
performing the UAS, especially at high frequencies.

D. Neuronal model with Gamma-distributed inputs:
Biophysical models

We apply here the results of the previous section to the
case of a biophysical neuronal model with renewal inputs. In
particular, we consider the Hodgkin-Huxley (HH) model
with parameters given as in the literature [34,35]:

CdV=—gnym’h(V = Vy)dt — gun* (V= V,)dt
- gL(V_ VL)dt + dlsyn(t) (21)

where I, (1) is defined by Eq. (10) and
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FIG. 2. (Color online) (Top) The interspike interval distributions of natural inputs obtained with Poisson intensity A=0.2 (left), 0.1
(right); histograms were constructed over 5000 intervals, bin size 0.2 ms. (Middle, bottom) The mean (left) and the coefficient of variation
(CV, right) of the interspike intervals generated by the IF model with natural inputs [(red) empty circles], and by the corresponding UAS
[(black) diamonds] and OUS approximating schemes [(blue) circles], plotted vs the inhibitory-excitatory ratio r.
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d_n_nw—n d_m_mw—m ﬁ_hx—h
dt T, ~ dt ., = dt 7
and
ay, @y, ap
Ny = s My =", = s
an+Bn am"’ﬁm ah+Bh
1 1 1
Tn_ b Tm=—’ =—’
an"'ﬂn am"‘ﬁm a’h"‘ﬁh
with
0.01(V +55) V+65
a, = , B,=0.125exp| ——— |,
( V+55> 80
1 —exp| -
10
0.1(V +40) V + 65
a, = ’ Bm:4eXP -7 s |
( V+40) 18
1 —exp| -
10
007 ( V+65> P 1
=0. xpl| — , = .
i P\T o " ( V+35)
1 +exp| -
10

The parameters used in Eq. (21) are C=1 uF/cm?, gy,
=120 mS/cm?, g,=36 mS/cm?, g;=0.3 mS/cm?, V,=-77
mV, Vy,=50 mV, and V;=-54.4 mV. All the parameters
used for the synaptic inputs are the same as in the previous
sections. The initial values for m, n, h, Ly, and V are 0.06,
0.35, 0.6, By, and —65 mV, respectively.

In Fig. 3 we report the mean and CV of the firing time vs
the ratio r, as obtained for different values of the input pa-
rameters: k=0.5,u=10,a=0.5 (upper panel); «=1,u=10,
a=0.5 (Poisson input case, middle panel); and =10,
u=2,a=1 (bottom panel). It appears that for k<1 the UAS
provides a better approximation than the OUS. However,
for k> 1, only the OUS was applicable. For example, when
k=10, the HH model could not generate a spike even when
the inhibitory-excitatory ratio was reduced down to r=0.2.
The reason is that the HH model is particularly sensitive to
the second-order statistics of the input, which is not fully
included in the UAS. This result confirms that the OUS is
more effective in approximating the effect of non-Poissonian
inputs.

III. MOMENT MAPPING

From the results of the previous section, we have that
both the UAS and the OUS work well for the IF model
within a range of physiologically realistic firing rates, say up
to 150 Hz. Therefore, we are in the position to develop our
MNN framework.

We confine our discussion to feedforward networks, al-
though the results presented below can be easily generalized
to feedback and recurrent networks.

In comparison with the previous sections, a slightly more
complicated notation is needed here. For V,,>V,,, and when
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(k+])(t)< Vi, the membrane potential of the ith neuron in
the (k+1)th layer v<k+1)(t) satisfies the following dynamics:

do® V(1) = = L " (1) =V, Jdr + dI* D (),

isyn

v (0) = Vs (22)

where the synaptic input 1) is given by

isyn

p® q®

I(]‘”)(t) EW k)dNE(k)(l‘) EW k)le(k)(t) (23)

i,syn
Here w ) is the magnltude of EPSPs, w]( is the magnitude
of IPSPS N “ and N ) are renewal processes (EPSPs and
IPSPs) generated from neurons i and j with 1ntersp1ke inter-
vals and Tln(lk), m=1,2,..., and p(k) and q are the total
number of active exmtatory and inhibitory neurons in the kth
layer. Once vl(,k”)(t) is greater than or equal to V,,, it is reset
to Vresl'
According to Eq. (1), we have

O ( ! [<<T5’<k>)2>—<T5’<“>2])
E.(k)y? E,(k)y3
dr T®y (T

where N(-, -) is the normal distribution. A more accurate ap-
proximation can be obtained using a similar idea as em-
ployed in Theorem 2, although the moment mapping be-
comes very complicated in this case. Besides, our previous
results suggest that, for the IF model, the UAS is already a
good approximation in most cases.

We introduce more notation by defining

(T D)5 (T 507
<TE(k)>3

PR —
Y <TE (k)> + Tref’

E,(k)\2 _
(U'ij ) =

where T, is the refractory period (5 ms in all simulations
below). For the ith neuron in the kth layer, we have (by
Theorem 1)

ANEO(1) ~ ply Ot + o VBN () (24)

where B; E(k )(t) is the standard Browman motion with a cor-

relation coefﬁment p( ,i, j=1,...,N®. Summarizing the re-
sults above, we obtam

®
P
D WE k)dNE () = z s (k)’qul d

=1
+ 2 wiy Pl OdBr M ().

Let us further suppose that p(k)zq(k> and, for simplicity of
notation,

Mjk> = uli E.(k) _ ,U«I (k)’

k Ek k
o= o 0 = b,
rw(k) rwg ) - wlj(k), (25)
where i=1,...,p%", j=1,....p® and r is the ratio be-

tween inhibitory inputs and excitatory inputs. In particular,
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FIG. 3. (Color online) The mean (left) and the coefficient of variation (CV, right) of the interspike intervals generated by the HH model
with renewal process inputs, and by the corresponding UAS [(black) diamonds] and OUS [(blue) circles] approximations (where applicable),
are plotted vs the inhibitory-excitatory input ratio r. Reported on the legend are the values of the parameters «, u used for the Gamma
distribution, and the post-synaptic potentials’ amplitude a (in mV).

041906-8



DYNAMICS OF MOMENT NEURONAL NETWORKS

when =0 the neuron receives exclusively excitatory inputs;
when r=1 the inhibitory and excitatory inputs are exactly
balanced. Now we have

dIf’:,L) 2 wf]k),u] —r)dt+ 2 w(k) (k) 1+ rdeyO(t)

(26)

where B(k)(t) i= p™ are correlated Brownian motions
with correlation coefﬁment p( )
®)

In the following we define 7, =0 and

7-Ejlf+1) = inf{l:U§k+1)(Z) = Vt N3 > i(];'tll))}’ j: 1’2’ et
Then
T 2 ) oD iy (27)

Let Tfk”) 7%V be the interspike intervals of renewal pro-

cesses N £ ) and Nll,’(k”). In terms of Siegert’s expression

[15] we have the expression of all moments of the output
interspike interval distribution. In particular, for the mean we
have

2 (AP L-a®

(ri)=— f sdr. AP =2

l LJabo 7L
(28)

where
wa,“n, ),
2= winawilalpl (142, (29)
m,n

and
glx)= exp(xz)fx exp(— u?)du,

while for the variance we have

4 fk)( 1/1) 5 X " o
17 exp(x”) exp(— u?)g*(u)du |dx.
(0) o

(30)

Var(T(k+1 )=

To complete the description of the moment mapping (see
below for definition) we need to consider the relationship
between the input and the output correlations. Unfortunately,
such a relationship is difficult to derive analytically, so we
had to resort to numerical simulations. To this end, we simu-
lated two IF neurons with inputs given by

w1 =ndi+\u(1+)dBY, =12,

where u is a constant and B are correlated Brownian mo-
tions with correlation coefficient p;,. In Fig. 4 we have plot-
ted the output correlation coefficient p,,, defined as a func-
tion of the input correlation for various values of the ratio r.
The results indicate that the input-output relationship is close
to the identity, independently of r and u.

PHYSICAL REVIEW E 73, 041906 (2006)

pout

-1 -0.8 -0.6 P -0.4 -0.2 0
in

FIG. 4. (Color online) The relationship between the input and
output correlation coefficients (p;,,p,.) for an IF model with
Gaussian input. The output correlation coefficient was calculated
over a series of 5000 spikes for each value of r. The calculated
relationship is almost linear and independent of the ratio r for both
positive (top) and negative (bottom) input correlation.

Hence, we can assume that the following heuristic rela-
tionship holds:

wk) &) )

k
E me) m

jnU Pmn
p(k+1)_ mn
Y K (k k
S wioiit o i [ ool o,
m,n m,n
(31)

Note that the right-hand side of Eq. (31) is the correlation of
the inputs to the ith and the jth neurons in the (k+ 1)th layer.

Let us have a few words on the implications of Eq. (31).
Assume that wffn) =w>0, o-f,f) =0>0, and pl(:fﬁp,m #n, then

we have
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FIG. 5. (Color online) Propagation of activity in a homogeneous feedforward MNN. For each layer &, the output firing rate (,u(lk)) and the
coefficient of variation (CV) of the interspike intervals (C(lk)) are reported on the abscissa and the ordinate, respectively. Points labeled 1
correspond to the first layer; points corresponding to successive layers are connected by lines. Results were obtained for p¥®=100, pi;=0,
,u,(ll) =100 Hz (solid lines), 50 Hz (dashed lines), and C(ll)z V2 (top left), 1 (top right), and V0.5 (bottom left). (Bottom right) Results obtained

1

for r=0.25,026.....0.3, p\'=0.1,C{"=1,u"' =50 Hz.

(kt1) _ P +pYp" - 1)p 1
i 0 0,0 1),

where p® is the total number of neurons in the kth layer. In
other words, the neuronal activity is fully correlated (syn-
chronized). Similar synchronized spike trains have been ob-
served earlier in the literature [17] (see Fig. 7 there) for
feedforward spiking networks. In the general case where

wgl.‘), o and p(.l.‘) are not homogeneous, and the relationship
j > m ij

between the input and the output correlations differs from the

identity, pl(.fﬂ) will be different from 1.
Another extremal case is observed when the vectors
k k k k
w; )={w§m),m=l, ...p%}  and wj(. )={wj(.m),m=l, ., pW)
are orthogonal. Since we require that WEQBO, we conclude

that = w(k)a(k)w(k)a(k)pif’)z:O and therefore pl(.j].(”):O. As-

mnim - m jn T n

suming that A,BC{l,...,p**V}, ANB=®, and wgk) 1 wJ(.k)
for i € A,j € B, then the neuronal activity in A and B is in-
dependent, i.e., a “patched” neuronal activity is observed in
this case.

We stress here that certainly we could approximate the
relationship as depicted in Fig. 4 more accurately, using for
example a polynomial function. Nevertheless, as a first step
to develop the MNN framework, we simply use Eq. (31) in
the following.

In summary, from Egs. (28), (30), and (31), we have the
following relationship between inputs and outputs:

(a0, G0, pe ) = M, aW.p%) - (32)

where ﬁ(k)z{,ugk),i: 1,....p%}, &(k):{ol(.k),izl, —pM}
and M is the mapping defined by Egs. (28), (30), and (31).
Equation (32) gives us the relationship of the first- and the
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FIG. 6. (Color online) Propagation of activity in a homogeneous feedforward MNN. (Upper left) The mean output firing rate (,u,(lk)) and
the coefficient of variation of the output interspike intervals (C(lk)) in the first 20 layers of the network, k=1, ...,20. Results obtained with
p®=300, ,ul(.l)=5 Hz, CI(.I)=1, p@:O.I, and r=1.5,1.6,1.7,1.8,1.9. Points labeled 1 correspond to the first layer; points corresponding to

1l

successive layers are connected by lines. (Upper right) Color intensity gives the mean firing rate (in Hz) observed in the 12th layer, as a
function of the excitatory-inhibitory input ratio » and the number of neurons per layer. Results obtained for ,u,l(.l)z 10 HZ,CEI)= 1. (Bottom left,
right) The input-output firing rate relationships obtained for p®=100 (left), 300 (right), and varying excitatory-inhibitory input ratio . Note
the appearance of a stable solution at low firing rate for networks of increasing size with strong inhibition.

second-order moments in a spiking neuronal network and is
called moment mapping, which is one of the central results
in the MNN. Note that the setup here is quite general and
when wﬁﬁf:O there is no connection between the jth and mth
neurons.

IV. APPLICATIONS

The question we intend to address here is how a sponta-
neous activity can be maintained in a feedforward network.
The parameters used for simulations are V,,,=0 mV,
L=1/20 ms~!, and V,;,=20 mV, in agreement with most pub-
lished results [36,7]. All simulations were carried out with
MATLAB [37].

A. Spontaneous activity with clamped correlation

We start by considering a homogeneous network, where
all weights, afferent means, and variances were set to be
identical. Equation (32) then reduces to

(AD,G o) = M(ED,G0,p0) (33)

with ,u(lk)= /Lj(,k),a(lk)mr;k), p(lkz)= P;Z , m#n. As we discussed
before, the propagation of correlation becomes trivial in such
case since all cells become fully correlated after the first
layer. To avoid this, we “clamped” the correlation coefficient,
i.e., we set pgf)zﬁ, i # j. In simulations we set p=0 or 0.1, in
agreement with experimental data reported in the literature
[2,10]. Also, we set p'=100, w;=w=0.5, and varied the
ratio r in the range between 0 and 0.4.
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FIG. 7. (Color online) Propagation of activity in a feedforward MNN with random connections. (Top) The output CV vs the mean firing
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FIG. 8. (Color online) Propagation of activity in a feedforward MNN with Mexican hat type connections. (Top left) The output CV vs
the mean firing rate in the first ten layers of the network (with open boundary conditions). (Top right) The correlation coefficients for three
cells in layer 10. (Bottom) Same as above but with periodic boundary conditions. Parameters used for simulations: r=1.5,p% =324,

k=1,2,....12,p=0.1,u" ~ U10,100],C{" =1

In Fig. 5, we show the results obtained for various values
of u" and 0(1 (we reported the coefficient of variation

C(k) (k)/ M “). Each data point (u®,C®) is connected with
(,u(k”) C(k”)) to illustrate how the activity is propagated
across the network. Figures 5 (top left, right; bottom right)
show that after the first few layers, neurons are found to be
either silent* or firing at relatively high frequency (about
100 Hz). We never found values of r between 0 and 1 that
lead to a stable firing rate below 10 Hz. We also carried out
a more detailed exploration of the network behavior in the
range between r=0.25 and 0.3, with p=0.1. The results
shown in Fig. 5 confirm that the network activity converges
to either high firing frequency or to silence.

*We stop our simulation when the firing rate is slower than
0.001 Hz.

Having observed this difficulty, we tried exploring a
wider parameter region. From the results reported in Fig. 6
(upper panel left), we conclude that r must be significantly
higher than 1 (exactly balanced input) for the network to
display a stable activity at low firing rates. For instance,
when r=1.9 and p=0.05, the output firing rate was below
10 Hz, with a coefficient of variation of about 1.2 (data not
shown). This also validates our approach since the output
process is surely not a Poisson process, but a renewal pro-
cess, i.e., Cy, 7 1.

The reason why such a high level of inhibition is neces-
sary to maintain a spontaneous activity can be explained as
follows. Depending on whether O<r=<1 or r>1, the input-
output firing rate relationship of a neuron will be a sigmoidal
or a skewed bell-shaped function [36], respectively. Since
both functions start from the origin (see also Ref. [16], Fig.
8.13, middle panel), there will always be a fixed point of the
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FIG. 9. (Color online) The mean firing rate for different layers, corresponding to Fig. 8 (bottom). Note the different scale for

each layer.

system correspondent to the silence state. For a sigmoidal
input-output function, there may be either one or three fixed
points for the neuronal dynamics. In the latter case, both the
silence state and the state at the highest firing rate are stable,
and the system will settle on either one of the two depending

on the input. However, for the existence of a fixed point at
positive firing rate, a strong excitatory input is required, as
shown in Fig. 6 (bottom), which also sets the stable firing
rate at a relatively high level.
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With a skewed-bell input-output function, instead,
the fixed point at positive firing rate (whenever it exists)
occurs at a significantly lower firing rate than for a sigmoid,
see Fig. 6 (bottom right). Note that, for a skewed bell-shaped
input-output function, there may be only two fixed points.
In this case, the system may display a more complicated
dynamics, with the appearance of limit cycles or chaotic
activity.

We found that by increasing the number of neurons
per layer we could obtain a larger encoding and decoding
region for the system. For instance, when p*< 200 the
output firing rate was either 0 or above 100 Hz, whereas
for p®)>250 the output range was continuous. These con-
clusions remained true also when the threshold was set to
V=10 mV [7] or a refractory period was included (data not
shown).

In the literature, the assumption of exactly balanced spik-
ing neuronal network is widespread (see for example Refs.
[36,7,38]). However, with biologically reasonable parameters
[7] we found that a feedforward spiking neuronal network
cannot maintain a low-frequency spontaneous activity unless
a much stronger inhibitory input is present. In this regard, it
has recently been estimated in Ref. [32] that the magnitude
of IPSP is about five times larger than that of EPSP, i.e.,
bla=5 (see also Ref. [16], p. 239).

B. General case

We now turn to the case of a heterogeneous network and
remove the constraint on the correlation coefficient between
neurons. In accordance with the results reported in the pre-
vious subsection, we fixed the total number of neurons in
each layer to p®'=324.

First we generated random connections wl(f) [0,0.5],
and inputs Mgl) €[0,100] Hz. We also assumed that (o'gl))2
= ,u,gl) (i.e., the first layer is Poissonian), and that pﬁ;)=0.l for
i,j=1,...,324.

Simulations show that all neurons synchronize after
the 4th layer, i.e., pgl.‘)=1 for k=4 and that the network
is stable; see Fig. 7 (top). This result is in agreement
with numerical experiments of feedforward spiking neuronal
networks, showing that neurons get synchronized quite
easily [17], as illustrated in Fig. 7 (middle and bottom pan-
els). In fact, desynchronization rather than synchronization
seems to be the major problem for a spiking neuronal
network.

In order to avoid synchronization we introduced a Mexi-
can hat weight distribution. To this end, we first rearranged
all neurons {1,2,...,p} on a two-dimensional square lattice
by assigning to neuron i € {1,2,...,p} coordinates

(=1
=)

y(i) = (i = 1) — nx(i) = mod(i — 1,n) (34)

with p®=n2. Then, for i,j=1,2,...,p%®, and k=1,2,..., we
set

PHYSICAL REVIEW E 73, 041906 (2006)
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FIG. 10. (Color online) The correlations between the central cell
in the tenth layer and the other cells in the same layer, correspond-
ing to Fig. 8 (bottom).

W = MOAx(0) - x()L.01[yG) - y()D,  (35)

where M(x,y) is the Mexican hat function, defined for
(x,y) e R? as

Mx.y) m [ ( x2+y2) 1 ( x2+y2>}
X, y)=—7—|exp|l—-—5— | — - exp|—
g 21y P 2y 2 P 8y

(36)

with m>0, y>0 modulation parameters. For simulations
we used m=3, y=0.5. Also we set ,uf,l) e U[0,100] Hz,
(01")2=p", and pj'=0.1.

The results shown in Fig. 8 indicate that the activity in the
network becomes stable after the sixth layer. Also, as indi-
cated by the values of the correlation coefficients (right
panel), the neurons do not synchronize, and the mean corre-
lation coefficient between neurons was around zero. In other
words, the lateral inhibition introduced by the Mexican hat
pushes cells to fire with more widely spread firing rates than
in a network with random interactions.

To avoid boundary effects due to the finite size of the
system, we rerun simulation using periodic boundary condi-
tions. The results are shown in Fig. 8 (bottom panel) (see
Fig. 9 for more details). In Fig. 10 we plotted the correlations
for the central cell in the tenth layer: on average the correla-
tion coefficient is slightly negative, in agreement with ex-
perimental observations [39,40]. Figure 11 shows the results
obtained with r=1.1.

It is interesting to note that from the first to the second
layer, there is a general reduction in firing rate. Then, after a
few transition layers, the neuronal activity becomes stable,
with firing rates distributed around 100 Hz and a CV greater
than 0.5. In summary, the activity in a MNN becomes sta-
tionary after a few layers. With random interactions, the
network gets easily synchronized. However, with lateral
interactions, firing rates of individual neurons tend to spread
out.
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FIG. 11. (Color online) Propagation of activity in a feedforward MNN with mexican hat type connections. (Top left) The output CV vs
the mean firing rate in the first ten layers of the network (with open boundary conditions). (Top right) The correlation coefficients for three
cells in layer 10. (Bottom) Same as above but with periodic boundary conditions. Parameters for simulations were as in Fig. 8, but r=1.1.

Finally, the network simulations reported here show
that an highly irregular output firing is produced as a
result of correlations between neuronal activity [41-43].
This confirms our general findings [2] that correlated input
is key to generate irregular spike trains (say, with C,.>0.5).

V. DISCUSSION

To approximate neuronal models with renewal process in-
puts has always been a bottleneck for the development of a
theory of spiking neuronal networks, since even the simplest
neuronal model, the integrate-and-fire model, emits spike
trains which are renewal processes. In this paper, we have
presented two schemes, the UAS and the OUS, that serve
this purpose. Using numerical simulations, we have demon-
strated that both schemes work well for the integrate-and-fire
model.

Based upon these results, we have developed a framework
of moment neuronal networks, where the network behavior

depends on both the mean and the fluctuations and correla-
tions of spike activity. Within this context, we have consid-
ered how spontaneous activity can be maintained in a feed-
forward spiking neuronal network. Our results suggest that a
necessary condition is that the inhibitory input be muchstron-
ger than the excitatory input. Whether such strong inhibition
is present also during periods of stimulated activity is an
open problem. If the nervous system does reduce the inhibi-
tory input during such periods, it is natural to ask to what
extent and how this reduction is achieved.

In the current paper we have focused on the case of
stationary interactions. In the near future, we intend to gen-
eralize our framework to the nonstationary case and intro-
duce a suitable mechanism for learning, based on the ideas
developed in the ANN. This might, for instance, shed light
on how the inhibitory input changes during different periods
of activation.

The results presented here should be considered as an
attempt toward a theory of computation with stochastic sys-
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tems. Under this respect, the MNN framework plays the role
of the central limit theorem in the probability theory, whereas
earlier approaches, based exclusively upon the mean, could
be likened to the law of large numbers.
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